Properties

Label 2.8.16.77
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(16\)
Galois group $C_2\wr A_4$ (as 8T38)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 8 x^{6} + 8 x^{2} + 20 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.4.6.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 24 x^{7} + 31754 x^{6} - 7980 x^{5} + 93242 x^{4} + 131040 x^{3} + 1983672 x^{2} + 1922940 x + 5996430 \)

Invariants of the Galois closure

Galois group:$C_2\wr A_4$ (as 8T38)
Inertia group:$C_2^3 : D_4 $
Unramified degree:$6$
Tame degree:$1$
Wild slopes:[2, 2, 2, 2, 5/2]
Galois mean slope:$35/16$
Galois splitting model:$x^{8} - 4 x^{7} + 4 x^{5} + 22 x^{4} - 4 x^{3} + 4 x + 1$