Properties

Label 2.8.16.70
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(16\)
Galois group $C_4\wr C_2$ (as 8T17)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 8 x^{3} + 8 x^{2} + 24 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-*})$, 2.4.6.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 6 x^{6} + 12 x^{4} + 16 x^{3} + 80 x^{2} + 108 x + 54 \)

Invariants of the Galois closure

Galois group:$C_4\wr C_2$ (as 8T17)
Inertia group:$Q_8$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:[2, 2, 5/2]
Galois mean slope:$2$
Galois splitting model:$x^{8} + 10 x^{4} - 40 x^{2} + 45$