Properties

Label 2.8.16.69
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(16\)
Galois group $C_4\wr C_2$ (as 8T17)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 12 x^{6} + 28 x^{4} + 52 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.4.6.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 36 x^{7} + 75118 x^{6} + 747624 x^{5} + 37585564 x^{4} - 52508352 x^{3} + 584097072 x^{2} - 334666332 x + 67193802 \)

Invariants of the Galois closure

Galois group:$C_4\wr C_2$ (as 8T17)
Inertia group:$Q_8$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:[2, 2, 5/2]
Galois mean slope:$2$
Galois splitting model:$x^{8} + 2 x^{6} - 12 x^{5} + 4 x^{4} + 8 x^{3} + 14 x^{2} - 8 x + 1$