Properties

Label 2.8.16.66
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(16\)
Galois group $QD_{16}$ (as 8T8)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 8 x^{4} + 336 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-*})$, 2.4.6.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 14 x^{6} + 144 x^{5} + 1104 x^{4} + 6408 x^{3} + 22964 x^{2} + 43020 x + 66070 \)

Invariants of the Galois closure

Galois group:$SD_{16}$ (as 8T8)
Inertia group:$Q_8$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2, 2, 5/2]
Galois mean slope:$2$
Galois splitting model:$x^{8} + 6 x^{4} - 3$