Properties

Label 2.8.16.64
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(16\)
Galois group $V_4^2:(S_3\times C_2)$ (as 8T41)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 8 x^{5} + 4 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-1})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} - 4 x^{7} - 16 x^{6} - 8 x^{5} + 98 x^{4} - 128 x^{3} + 76 x^{2} - 20 x + 2 \)

Invariants of the Galois closure

Galois group:$C_2^2:S_4:C_2$ (as 8T41)
Inertia group:$C_2^4:C_6$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2, 7/3, 7/3]
Galois mean slope:$103/48$
Galois splitting model:$x^{8} - 8 x^{6} - 12 x^{5} + 24 x^{4} + 60 x^{3} + 64 x^{2} + 36 x + 13$