Properties

Label 2.8.16.60
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(16\)
Galois group $S_4\times C_2$ (as 8T24)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 10 x^{6} + 4 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{2*})$, 2.4.4.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} - 8 x^{7} + 419036 x^{6} - 2514104 x^{5} + 6375592 x^{4} - 8741824 x^{3} + 6850510 x^{2} - 2921564 x + 532986 \)

Invariants of the Galois closure

Galois group:$C_2\times S_4$ (as 8T24)
Inertia group:$A_4\times C_2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 3]
Galois mean slope:$25/12$
Galois splitting model:$x^{8} + 6 x^{6} + 18 x^{4} + 24 x^{2} + 9$