Properties

Label 2.8.14.6
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(14\)
Galois group $C_2^3:C_7$ (as 8T25)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 4 x^{7} + 4 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $14$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 2 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 1618 x^{7} - 6460 x^{6} + 10736 x^{5} - 4806 x^{4} + 92 x^{3} + 14840 x^{2} - 8760 x + 4798 \)

Invariants of the Galois closure

Galois group:$F_8$ (as 8T25)
Inertia group:$C_2^3$
Unramified degree:$7$
Tame degree:$1$
Wild slopes:[2, 2, 2]
Galois mean slope:$7/4$
Galois splitting model:$x^{8} - 2 x^{7} + 14 x^{6} - 14 x^{5} - 126 x^{4} + 630 x^{3} + 658 x^{2} - 5130 x + 10267$