Properties

Label 2.8.14.4
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(14\)
Galois group $C_2^3 : C_4 $ (as 8T19)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 4 x^{7} + 8 x^{2} + 4 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $14$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-*})$, 2.4.6.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} + 4354 x^{7} - 8802 x^{6} - 44264 x^{5} + 221986 x^{4} - 505128 x^{3} + 710608 x^{2} - 547584 x + 168902 \)

Invariants of the Galois closure

Galois group:$C_2^2.D_4$ (as 8T19)
Inertia group:$C_2^3$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:[2, 2, 2]
Galois mean slope:$7/4$
Galois splitting model:$x^{8} - 2 x^{7} - 2 x^{5} + 4 x^{4} + 2 x^{3} + 2 x + 1$