Defining polynomial
| \( x^{8} + 4 x^{7} + 8 x^{2} + 4 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $8$ |
| Ramification exponent $e$ : | $8$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $14$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $|\Aut(K/\Q_{ 2 })|$: | $2$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| $\Q_{2}(\sqrt{-*})$, 2.4.6.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: | \( x^{8} + 4354 x^{7} - 8802 x^{6} - 44264 x^{5} + 221986 x^{4} - 505128 x^{3} + 710608 x^{2} - 547584 x + 168902 \) |