Defining polynomial
| \( x^{8} + 28 x^{2} + 20 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $8$ |
| Ramification exponent $e$ : | $8$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $12$ |
| Discriminant root field: | $\Q_{2}(\sqrt{*})$ |
| Root number: | $1$ |
| $|\Aut(K/\Q_{ 2 })|$: | $2$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| 2.4.4.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: | \( x^{8} - 8 x^{7} - 264 x^{6} + 182 x^{5} + 33688 x^{4} + 24160 x^{3} + 2882206 x^{2} - 3689392 x + 2598862 \) |
Invariants of the Galois closure
| Galois group: | $\GL(2,3)$ (as 8T23) |
| Inertia group: | $\SL(2,3)$ |
| Unramified degree: | $2$ |
| Tame degree: | $3$ |
| Wild slopes: | [4/3, 4/3, 2] |
| Galois mean slope: | $19/12$ |
| Galois splitting model: | $x^{8} - 4 x^{6} + 12 x^{2} - 12$ |