Properties

Label 2.8.12.29
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(12\)
Galois group $\textrm{GL(2,3)}$ (as 8T23)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 28 x^{2} + 20 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $12$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.4.4.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{8} - 8 x^{7} - 264 x^{6} + 182 x^{5} + 33688 x^{4} + 24160 x^{3} + 2882206 x^{2} - 3689392 x + 2598862 \)

Invariants of the Galois closure

Galois group:$\GL(2,3)$ (as 8T23)
Inertia group:$\SL(2,3)$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2]
Galois mean slope:$19/12$
Galois splitting model:$x^{8} - 4 x^{6} + 12 x^{2} - 12$