Properties

Label 2.8.12.20
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(12\)
Galois group $C_2^3: C_4$ (as 8T21)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 8 x^{6} + 12 x^{4} + 80 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $12$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, $\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{-*})$, 2.4.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + 6 t x^{3} + \left(4 t + 2\right) x^{2} + 4 t x + 6 t + 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2^2.D_4$ (as 8T21)
Inertia group:Intransitive group isomorphic to $C_2^3$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:[2, 2, 2]
Galois mean slope:$7/4$
Galois splitting model:$x^{8} - 2 x^{7} - 2 x^{6} + 10 x^{5} + 6 x^{4} - 10 x^{3} - 2 x^{2} + 2 x + 1$