Properties

Label 2.8.12.1
Base \(\Q_{2}\)
Degree \(8\)
e \(2\)
f \(4\)
c \(12\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 6 x^{6} + 8 x^{5} + 16 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $12$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Gal(K/\Q_{ 2 })|$: $8$
This field is Galois and abelian over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{2*})$, 2.4.0.1, 2.4.6.1, 2.4.6.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.4.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{4} - x + 1 \)
Relative Eisenstein polynomial:$ x^{2} + 4 x + 2 t^{3} + 4 t^{2} + 6 t + 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2\times C_4$ (as 8T2)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:[3]
Galois mean slope:$3/2$
Galois splitting model:$x^{8} + 2 x^{6} + 4 x^{4} + 8 x^{2} + 16$