Defining polynomial
| \( x^{8} + 4 x^{2} + 20 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $8$ |
| Ramification exponent $e$ : | $8$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $10$ |
| Discriminant root field: | $\Q_{2}(\sqrt{*})$ |
| Root number: | $1$ |
| $|\Aut(K/\Q_{ 2 })|$: | $2$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| 2.4.4.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: | \( x^{8} - 12 x^{7} + 104 x^{6} + 214 x^{5} - 2658 x^{4} + 6018 x^{3} + 18382 x^{2} - 67796 x + 91970 \) |
Invariants of the Galois closure
| Galois group: | $\GL(2,3)$ (as 8T23) |
| Inertia group: | $\SL(2,3)$ |
| Unramified degree: | $2$ |
| Tame degree: | $3$ |
| Wild slopes: | [4/3, 4/3, 3/2] |
| Galois mean slope: | $4/3$ |
| Galois splitting model: | $x^{8} - 2 x^{6} - 2 x^{5} - 2 x^{3} - 2 x^{2} + 1$ |