Defining polynomial
| \( x^{6} + 2 x^{5} + 4 x^{3} + 6 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $6$ |
| Ramification exponent $e$ : | $6$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $10$ |
| Discriminant root field: | $\Q_{2}(\sqrt{-1})$ |
| Root number: | $i$ |
| $|\Aut(K/\Q_{ 2 })|$: | $2$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| 2.3.2.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: | \( x^{6} + 2 x^{5} + 4 x^{3} + 6 \) |
Invariants of the Galois closure
| Galois group: | $C_2\times S_4$ (as 6T11) |
| Inertia group: | $A_4\times C_2$ |
| Unramified degree: | $2$ |
| Tame degree: | $3$ |
| Wild slopes: | [2, 8/3, 8/3] |
| Galois mean slope: | $7/3$ |
| Galois splitting model: | $x^{6} + 2 x^{4} + 8 x^{2} + 4$ |