Properties

Label 2.4.4.5
Base \(\Q_{2}\)
Degree \(4\)
e \(4\)
f \(1\)
c \(4\)
Galois group $S_4$ (as 4T5)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 2 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $4$
Ramification exponent $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $1$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[4/3, 4/3]$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 2 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{4} + 2 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$
Associated inertia:$1$
Indices of inseparability:$[1, 1, 0]$

Invariants of the Galois closure

Galois group:$S_4$ (as 4T5)
Inertia group:$A_4$ (as 4T4)
Wild inertia group:$C_2^2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[4/3, 4/3]$
Galois mean slope:$7/6$
Galois splitting model: $x^{4} + 2 x + 2$ Copy content Toggle raw display