Properties

Label 2.4.4.2
Base \(\Q_{2}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(4\)
Galois group $C_4$ (as 4T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 4 x^{3} + 4 x^{2} + 12\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $4$
Ramification exponent $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 2 }) }$: $4$
This field is Galois and abelian over $\Q_{2}.$
Visible slopes:$[2]$

Intermediate fields

$\Q_{2}(\sqrt{5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 2 x + 4 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_4$ (as 4T1)
Inertia group:Intransitive group isomorphic to $C_2$
Wild inertia group:$C_2$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:$[2]$
Galois mean slope:$1$
Galois splitting model:$x^{4} - 5 x^{2} + 5$