Properties

Label 2.4.10.8
Base \(\Q_{2}\)
Degree \(4\)
e \(4\)
f \(1\)
c \(10\)
Galois group $D_{4}$ (as 4T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 4 x^{3} + 12 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $4$
Ramification exponent $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[3, 7/2]$

Intermediate fields

$\Q_{2}(\sqrt{-2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{4} + 4 x^{3} + 12 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[7, 4, 0]$

Invariants of the Galois closure

Galois group:$D_4$ (as 4T3)
Inertia group:$D_4$ (as 4T3)
Wild inertia group:$D_4$
Unramified degree:$1$
Tame degree:$1$
Wild slopes:$[2, 3, 7/2]$
Galois mean slope:$11/4$
Galois splitting model:$x^{4} + 2 x^{2} + 3$