Properties

Label 2.14.27.13
Base \(\Q_{2}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(27\)
Galois group $(C_7:C_3) \times C_2$ (as 14T5)

Related objects

Learn more about

Defining polynomial

\( x^{14} - 4 x^{12} + 8 x^{11} - 6 x^{10} - 4 x^{9} - 6 x^{8} + 4 x^{7} + 6 x^{6} - 4 x^{5} + 4 x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $27$
Discriminant root field: $\Q_{2}(\sqrt{2*})$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{2*})$, 2.7.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{14} - 4 x^{12} + 8 x^{11} - 6 x^{10} - 4 x^{9} - 6 x^{8} + 4 x^{7} + 6 x^{6} - 4 x^{5} + 4 x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 6 \)

Invariants of the Galois closure

Galois group:$C_2\times C_7:C_3$ (as 14T5)
Inertia group:$C_{14}$
Unramified degree:$3$
Tame degree:$7$
Wild slopes:[3]
Galois mean slope:$27/14$
Galois splitting model:$x^{14} + 14 x^{12} + 392 x^{10} + 4704 x^{8} - 44 x^{7} + 54768 x^{6} + 6160 x^{5} + 432544 x^{4} - 94864 x^{3} + 2430400 x^{2} + 224224 x + 7419748$