Properties

Label 2.14.26.46
Base \(\Q_{2}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(26\)
Galois group $C_2\times F_8:C_3$ (as 14T18)

Related objects

Learn more about

Defining polynomial

\( x^{14} + 2 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{8} + 4 x^{4} + 4 x^{3} + 4 x^{2} + 4 x - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $26$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.7.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{14} + 2 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{8} + 4 x^{4} + 4 x^{3} + 4 x^{2} + 4 x - 2 \)

Invariants of the Galois closure

Galois group:$C_2\times F_8:C_3$ (as 14T18)
Inertia group:14T9
Unramified degree:$3$
Tame degree:$7$
Wild slopes:[2, 20/7, 20/7, 20/7]
Galois mean slope:$75/28$
Galois splitting model:$x^{14} - 7 x^{12} - 245 x^{10} + 2107 x^{8} + 7203 x^{6} - 69237 x^{4} + 27783 x^{2} + 3969$