Properties

Label 2.14.22.31
Base \(\Q_{2}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(22\)
Galois group 14T35

Related objects

Learn more about

Defining polynomial

\( x^{14} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 4 x^{7} - 2 x^{4} - 2 x^{2} + 4 x - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $22$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.7.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{14} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 4 x^{7} - 2 x^{4} - 2 x^{2} + 4 x - 2 \)

Invariants of the Galois closure

Galois group:14T35
Inertia group:14T21
Unramified degree:$3$
Tame degree:$7$
Wild slopes:[12/7, 12/7, 12/7, 16/7, 16/7, 16/7]
Galois mean slope:$493/224$
Galois splitting model:$x^{14} + 28 x^{10} - 28 x^{9} - 518 x^{8} + 648 x^{7} + 1568 x^{6} - 6804 x^{5} - 532 x^{4} + 22848 x^{3} - 6076 x^{2} - 23520 x + 11364$