Properties

Label 2.14.22.3
Base \(\Q_{2}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(22\)
Galois group 14T35

Related objects

Learn more about

Defining polynomial

\( x^{14} - 2 x^{11} - 2 x^{10} - 2 x^{9} - 2 x^{8} + 4 x^{7} - 2 x^{4} + 4 x^{3} + 4 x^{2} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $22$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.7.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{14} - 2 x^{11} - 2 x^{10} - 2 x^{9} - 2 x^{8} + 4 x^{7} - 2 x^{4} + 4 x^{3} + 4 x^{2} + 2 \)

Invariants of the Galois closure

Galois group:14T35
Inertia group:14T21
Unramified degree:$3$
Tame degree:$7$
Wild slopes:[10/7, 10/7, 10/7, 16/7, 16/7, 16/7]
Galois mean slope:$243/112$
Galois splitting model:$x^{14} - 7 x^{12} + 21 x^{10} - 70 x^{9} - 287 x^{8} + 1340 x^{7} + 77 x^{6} - 2632 x^{5} - 6811 x^{4} + 19936 x^{3} - 10535 x^{2} - 3290 x + 1507$