Properties

Label 2.14.22.15
Base \(\Q_{2}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(22\)
Galois group 14T44

Related objects

Learn more about

Defining polynomial

\( x^{14} - 2 x^{13} + 2 x^{11} + 4 x^{10} + 2 x^{9} - 2 x^{8} + 4 x^{7} + 2 x^{6} + 4 x^{5} - 2 x^{4} - 2 x^{2} + 4 x - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $22$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.7.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{14} - 2 x^{13} + 2 x^{11} + 4 x^{10} + 2 x^{9} - 2 x^{8} + 4 x^{7} + 2 x^{6} + 4 x^{5} - 2 x^{4} - 2 x^{2} + 4 x - 2 \)

Invariants of the Galois closure

Galois group:14T44
Inertia group:$C_2 \wr C_7$
Unramified degree:$3$
Tame degree:$7$
Wild slopes:[10/7, 10/7, 10/7, 2, 16/7, 16/7, 16/7]
Galois mean slope:$495/224$
Galois splitting model:$x^{14} - 21 x^{12} + 91 x^{10} - 154 x^{9} + 147 x^{8} + 2020 x^{7} + 273 x^{6} - 4452 x^{5} - 2303 x^{4} - 28 x^{3} - 357 x^{2} + 42 x - 1$