Properties

Label 2.14.21.6
Base \(\Q_{2}\)
Degree \(14\)
e \(2\)
f \(7\)
c \(21\)
Galois group $C_{14}$ (as 14T1)

Related objects

Learn more about

Defining polynomial

\( x^{14} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{7} - 3 x^{6} + 2 x^{5} - 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $14$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $7$
Discriminant exponent $c$ : $21$
Discriminant root field: $\Q_{2}(\sqrt{-2})$
Root number: $-i$
$|\Gal(K/\Q_{ 2 })|$: $14$
This field is Galois and abelian over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-2})$, 2.7.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.7.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{7} - x + 1 \)
Relative Eisenstein polynomial:$ x^{2} + \left(12 t^{6} + 8 t^{5} + 4 t^{4} + 12 t^{2} + 4\right) x + 4 t^{6} + 12 t^{5} + 8 t^{4} + 14 t^{3} + 12 t^{2} + 8 t \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{14}$ (as 14T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$7$
Tame degree:$1$
Wild slopes:[3]
Galois mean slope:$3/2$
Galois splitting model:$x^{14} - 28 x^{12} - 42 x^{11} + 371 x^{10} + 1022 x^{9} - 791 x^{8} - 4240 x^{7} + 8057 x^{6} + 35938 x^{5} + 35840 x^{4} + 6146 x^{3} + 123060 x^{2} + 334516 x + 420353$