Defining polynomial
| \( x^{14} + 8 x^{13} - 4 x^{12} + 4 x^{11} + 5 x^{10} - 4 x^{9} - 4 x^{8} + 2 x^{7} - x^{6} + 6 x^{5} - 4 x^{4} + 6 x^{3} + 3 x^{2} + 6 x + 3 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $14$ |
| Ramification exponent $e$ : | $2$ |
| Residue field degree $f$ : | $7$ |
| Discriminant exponent $c$ : | $21$ |
| Discriminant root field: | $\Q_{2}(\sqrt{-2*})$ |
| Root number: | $i$ |
| $|\Gal(K/\Q_{ 2 })|$: | $14$ |
| This field is Galois and abelian over $\Q_{2}$. | |
Intermediate fields
| $\Q_{2}(\sqrt{-2*})$, 2.7.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 2.7.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{7} - x + 1 \) |
| Relative Eisenstein polynomial: | $ x^{2} + \left(4 t^{5} + 4 t^{3} + 4 t^{2} + 4\right) x + 4 t^{6} + 4 t^{3} + 2 t^{2} + 4 t + 6 \in\Q_{2}(t)[x]$ |