Properties

Label 2.14.21.26
Base \(\Q_{2}\)
Degree \(14\)
e \(2\)
f \(7\)
c \(21\)
Galois group $C_2\times F_8$ (as 14T9)

Related objects

Learn more about

Defining polynomial

\( x^{14} - 4 x^{11} + x^{10} + 4 x^{9} + 2 x^{8} - 2 x^{7} - 3 x^{6} - 2 x^{5} + 4 x^{4} - 2 x^{3} - x^{2} + 2 x - 3 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $14$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $7$
Discriminant exponent $c$ : $21$
Discriminant root field: $\Q_{2}(\sqrt{2})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.7.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.7.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{7} - x + 1 \)
Relative Eisenstein polynomial:$ x^{2} + \left(4 t^{6} + 4 t^{5} + 4 t^{3}\right) x + 2 t^{6} + 2 t^{5} + 6 t^{4} + 2 t^{3} + 6 t^{2} + 6 t + 4 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2\times F_8$ (as 14T9)
Inertia group:Intransitive group isomorphic to $C_2^4$
Unramified degree:$7$
Tame degree:$1$
Wild slopes:[2, 2, 2, 3]
Galois mean slope:$19/8$
Galois splitting model:$x^{14} - 14 x^{12} - 196 x^{10} + 1960 x^{8} + 9408 x^{6} - 9408 x^{4} + 896$