Properties

Label 2.14.20.9
Base \(\Q_{2}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(20\)
Galois group $C_2\times F_8:C_3$ (as 14T18)

Related objects

Learn more about

Defining polynomial

\( x^{14} + 2 x^{13} + 2 x^{9} + 2 x^{8} + 2 x^{7} + 2 x^{4} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.7.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{14} + 2 x^{13} + 2 x^{9} + 2 x^{8} + 2 x^{7} + 2 x^{4} + 2 \)

Invariants of the Galois closure

Galois group:$C_2\times F_8:C_3$ (as 14T18)
Inertia group:14T9
Unramified degree:$3$
Tame degree:$7$
Wild slopes:[10/7, 10/7, 10/7, 2]
Galois mean slope:$47/28$
Galois splitting model:$x^{14} + 7 x^{12} - 91 x^{10} - 497 x^{8} + 2331 x^{6} + 6993 x^{4} - 22869 x^{2} + 6561$