Properties

Label 2.14.20.13
Base \(\Q_{2}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(20\)
Galois group 14T44

Related objects

Learn more about

Defining polynomial

\( x^{14} - 2 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} - 2 x^{7} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{2}(\sqrt{-*})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.7.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{14} - 2 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} - 2 x^{7} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} - 2 \)

Invariants of the Galois closure

Galois group:14T44
Inertia group:$C_2 \wr C_7$
Unramified degree:$3$
Tame degree:$7$
Wild slopes:[8/7, 8/7, 8/7, 12/7, 12/7, 12/7, 2]
Galois mean slope:$815/448$
Galois splitting model:$x^{14} - 14 x^{12} - 112 x^{10} + 336 x^{8} - 1704 x^{7} + 4368 x^{6} - 8736 x^{5} + 15008 x^{4} - 8736 x^{3} - 4928 x^{2} + 1344 x + 96$