Properties

Label 2.14.20.10
Base \(\Q_{2}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(20\)
Galois group $(C_7:C_3) \times C_2$ (as 14T5)

Related objects

Learn more about

Defining polynomial

\( x^{14} + 2 x^{12} + 2 x^{11} + 4 x^{10} + 2 x^{8} - 2 x^{7} - 2 x^{6} + 4 x^{4} + 4 x^{3} - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $14$
Ramification exponent $e$ : $14$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $20$
Discriminant root field: $\Q_{2}(\sqrt{-*})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-*})$, 2.7.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{14} + 2 x^{12} + 2 x^{11} + 4 x^{10} + 2 x^{8} - 2 x^{7} - 2 x^{6} + 4 x^{4} + 4 x^{3} - 2 \)

Invariants of the Galois closure

Galois group:$C_2\times C_7:C_3$ (as 14T5)
Inertia group:$C_{14}$
Unramified degree:$3$
Tame degree:$7$
Wild slopes:[2]
Galois mean slope:$10/7$
Galois splitting model:$x^{14} - 49 x^{12} + 833 x^{10} - 5817 x^{8} - 44 x^{7} + 15771 x^{6} - 2156 x^{5} - 15323 x^{4} + 2156 x^{3} + 4963 x^{2} - 308 x - 23$