Defining polynomial
\( x^{14} + 2 x^{10} + 2 x^{8} + 2 x^{7} + 2 x^{5} + 2 \) |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $14$ |
Ramification exponent $e$: | $14$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $18$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 2 })|$: | $2$ |
This field is not Galois over $\Q_{2}.$ |
Intermediate fields
2.7.6.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: | \( x^{14} + 2 x^{10} + 2 x^{8} + 2 x^{7} + 2 x^{5} + 2 \) |
Invariants of the Galois closure
Galois group: | $F_8:C_3$ (as 14T11) |
Inertia group: | 14T6 |
Unramified degree: | $3$ |
Tame degree: | $7$ |
Wild slopes: | [12/7, 12/7, 12/7] |
Galois mean slope: | $45/28$ |
Galois splitting model: | $x^{14} - 14 x^{10} - 112 x^{9} - 238 x^{8} + 342 x^{7} + 1176 x^{6} + 1862 x^{5} - 1372 x^{4} - 2324 x^{3} - 4032 x^{2} + 1148 x + 190$ |