Defining polynomial
\( x^{14} + 2 x^{12} + 2 x^{8} + 2 x^{5} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 2 \) |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $14$ |
Ramification exponent $e$: | $14$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $16$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 2 })|$: | $2$ |
This field is not Galois over $\Q_{2}.$ |
Intermediate fields
2.7.6.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: | \( x^{14} + 2 x^{12} + 2 x^{8} + 2 x^{5} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 2 \) |
Invariants of the Galois closure
Galois group: | 14T44 |
Inertia group: | 14T21 |
Unramified degree: | $6$ |
Tame degree: | $7$ |
Wild slopes: | [8/7, 8/7, 8/7, 10/7, 10/7, 10/7] |
Galois mean slope: | $311/224$ |
Galois splitting model: | $x^{14} + 7 x^{12} - 14 x^{11} - 7 x^{10} - 238 x^{9} - 301 x^{8} - 174 x^{7} + 1631 x^{6} + 2842 x^{5} + 3003 x^{4} + 686 x^{3} - 1911 x^{2} - 882 x - 189$ |