Properties

Label 2.14.16.1
Base \(\Q_{2}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(16\)
Galois group $C_2\times F_8:C_3$ (as 14T18)

Related objects

Learn more about

Defining polynomial

\(x^{14} + 2 x^{13} + 2 x^{11} + 2 x^{10} + 2 x^{7} + 2 x^{6} + 2 x^{3} + 2\)  Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $14$
Ramification exponent $e$: $14$
Residue field degree $f$: $1$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}.$

Intermediate fields

2.7.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{14} + 2 x^{13} + 2 x^{11} + 2 x^{10} + 2 x^{7} + 2 x^{6} + 2 x^{3} + 2 \)  Toggle raw display

Invariants of the Galois closure

Galois group:$C_2\times F_8:C_3$ (as 14T18)
Inertia group:14T6
Unramified degree:$6$
Tame degree:$7$
Wild slopes:[10/7, 10/7, 10/7]
Galois mean slope:$19/14$
Galois splitting model:$x^{14} - 84 x^{10} - 140 x^{8} + 784 x^{6} - 1008 x^{2} + 432$  Toggle raw display