Defining polynomial
\( x^{14} - 3 x^{12} + 4 x^{11} - 2 x^{10} + 4 x^{9} - 2 x^{8} + 4 x^{6} - 2 x^{5} - 2 x^{4} + 2 x^{2} - 2 x + 3 \) |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $14$ |
Ramification exponent $e$: | $2$ |
Residue field degree $f$: | $7$ |
Discriminant exponent $c$: | $14$ |
Discriminant root field: | $\Q_{2}(\sqrt{-1})$ |
Root number: | $-i$ |
$|\Aut(K/\Q_{ 2 })|$: | $2$ |
This field is not Galois over $\Q_{2}.$ |
Intermediate fields
2.7.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 2.7.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{7} - x + 1 \) |
Relative Eisenstein polynomial: | $ x^{2} + \left(6 t^{6} + 2 t^{4} + 2 t^{3} + 4 t^{2} + 6 t\right) x + 2 t^{6} + 6 t^{5} + 2 t^{4} + 6 t^{3} + 4 \in\Q_{2}(t)[x]$ |
Invariants of the Galois closure
Galois group: | $C_2\times F_8$ (as 14T9) |
Inertia group: | Intransitive group isomorphic to $C_2^4$ |
Unramified degree: | $7$ |
Tame degree: | $1$ |
Wild slopes: | [2, 2, 2, 2] |
Galois mean slope: | $15/8$ |
Galois splitting model: | $x^{14} - 84 x^{10} - 70 x^{8} + 1505 x^{6} + 7 x^{4} - 6405 x^{2} + 4489$ |