Defining polynomial
\( x^{14} + 2 x^{9} + 2 x^{4} + 2 x^{2} + 2 x + 2 \) |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $14$ |
Ramification exponent $e$: | $14$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $14$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 2 })|$: | $2$ |
This field is not Galois over $\Q_{2}.$ |
Intermediate fields
2.7.6.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: | \( x^{14} + 2 x^{9} + 2 x^{4} + 2 x^{2} + 2 x + 2 \) |
Invariants of the Galois closure
Galois group: | $F_8:C_3$ (as 14T11) |
Inertia group: | 14T6 |
Unramified degree: | $3$ |
Tame degree: | $7$ |
Wild slopes: | [8/7, 8/7, 8/7] |
Galois mean slope: | $31/28$ |
Galois splitting model: | $x^{14} - 7 x^{12} - 28 x^{11} + 7 x^{10} + 168 x^{9} + 147 x^{8} - 272 x^{7} - 413 x^{6} + 364 x^{5} + 511 x^{4} - 196 x^{3} - 427 x^{2} - 420 x + 173$ |