Properties

Label 2.14.14.23
Base \(\Q_{2}\)
Degree \(14\)
e \(2\)
f \(7\)
c \(14\)
Galois group $F_8$ (as 14T6)

Related objects

Learn more about

Defining polynomial

\( x^{14} + x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 2 x + 1 \)

Invariants

Base field: $\Q_{2}$
Degree $d$: $14$
Ramification exponent $e$: $2$
Residue field degree $f$: $7$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}.$

Intermediate fields

2.7.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.7.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{7} - x + 1 \)
Relative Eisenstein polynomial:$ x^{2} + \left(2 t^{5} + 2 t^{3} + 2 t\right) x + 2 t^{4} + 2 t^{3} + 2 t + 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$F_8$ (as 14T6)
Inertia group:Intransitive group isomorphic to $C_2^3$
Unramified degree:$7$
Tame degree:$1$
Wild slopes:[2, 2, 2]
Galois mean slope:$7/4$
Galois splitting model:$x^{14} - 84 x^{10} + 70 x^{8} + 1505 x^{6} - 7 x^{4} - 6405 x^{2} - 4489$