Defining polynomial
| \( x^{14} - x^{5} - x^{3} - x + 1 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $14$ |
| Ramification exponent $e$ : | $1$ |
| Residue field degree $f$ : | $14$ |
| Discriminant exponent $c$ : | $0$ |
| Discriminant root field: | $\Q_{2}(\sqrt{*})$ |
| Root number: | $1$ |
| $|\Gal(K/\Q_{ 2 })|$: | $14$ |
| This field is Galois and abelian over $\Q_{2}$. | |
Intermediate fields
| $\Q_{2}(\sqrt{*})$, 2.7.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 2.14.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{14} - x^{5} - x^{3} - x + 1 \) |
| Relative Eisenstein polynomial: | $ x - 2 \in\Q_{2}(t)[x]$ |