Properties

Label 2.12.8.1
Base \(\Q_{2}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(8\)
Galois group $C_3 : C_4$ (as 12T5)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 11 x^{9} + 3 x^{8} - 9 x^{6} - 90 x^{5} + 3 x^{4} - 27 x^{3} + 135 x^{2} + 27 x + 55\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $3$
Residue field degree $f$: $4$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 2 }) }$: $12$
This field is Galois over $\Q_{2}.$
Visible slopes:None

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.3.2.1 x3, 2.4.0.1, 2.6.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.4.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{4} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + z + 1$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_3:C_4$ (as 12T5)
Inertia group:Intransitive group isomorphic to $C_3$
Wild inertia group:$C_1$
Unramified degree:$4$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model: $x^{12} - 3 x^{11} - 888 x^{10} + 2660 x^{9} + 308151 x^{8} - 878220 x^{7} - 53209587 x^{6} + 132388596 x^{5} + 4800412971 x^{4} - 8975649010 x^{3} - 213443493450 x^{2} + 211625342025 x + 3644274033955$ Copy content Toggle raw display