Defining polynomial
| \( x^{12} + 4 x^{11} - 4 x^{10} - 2 x^{8} + 4 x^{2} + 8 x + 6 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $12$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $34$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $|\Aut(K/\Q_{ 2 })|$: | $2$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| 2.3.2.1, 2.6.11.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: | \( x^{12} - 12 x^{11} + 60 x^{10} - 160 x^{9} + 222 x^{8} - 48 x^{7} - 416 x^{6} + 864 x^{5} - 912 x^{4} + 576 x^{3} - 204 x^{2} + 24 x + 6 \) |
Invariants of the Galois closure
| Galois group: | $C_2\times C_4^2:C_3:C_2^2$ (as 12T138) |
| Inertia group: | 12T89 |
| Unramified degree: | $2$ |
| Tame degree: | $3$ |
| Wild slopes: | [2, 8/3, 8/3, 3, 23/6, 23/6] |
| Galois mean slope: | $85/24$ |
| Galois splitting model: | $x^{12} + 2 x^{10} - 3 x^{8} + 4 x^{6} + 11 x^{4} + 6 x^{2} + 1$ |