Properties

Label 2.1.12.34a1.261
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(34\)
Galois group $C_2\wr S_4$ (as 12T223)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 4 x^{11} + 8 x^{7} + 4 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification index $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $34$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{23}{6}]$
Visible Swan slopes:$[2,\frac{17}{6}]$
Means:$\langle1, \frac{23}{12}\rangle$
Rams:$(6, 11)$
Jump set:$[3, 9, 21]$
Roots of unity:$2$

Intermediate fields

2.1.3.2a1.1, 2.1.6.11a1.11

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{12} + 4 x^{11} + 8 x^{7} + 4 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$2$,$1$,$1$
Indices of inseparability:$[23, 12, 0]$

Invariants of the Galois closure

Galois degree: $1536$
Galois group: $C_2\wr S_4$ (as 12T223)
Inertia group: $C_2\wr A_4$ (as 12T187)
Wild inertia group: $C_2^2:D_4^2$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, \frac{8}{3}, \frac{8}{3}, 3, 3, \frac{23}{6}, \frac{23}{6}]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},\frac{5}{3},\frac{5}{3},2,2,\frac{17}{6},\frac{17}{6}]$
Galois mean slope: $3.5807291666666665$
Galois splitting model:$x^{12} + 2 x^{10} + x^{8} - 9 x^{4} - 22 x^{2} - 11$