Properties

Label 2.12.34.191
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(34\)
Galois group $C_2\times C_4^2:C_3:C_2^2$ (as 12T138)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} - 4 x^{10} + 4 x^{8} + 4 x^{6} + 8 x^{5} + 2 x^{4} + 8 x^{3} + 8 x^{2} - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $34$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.11.15

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 12 x^{11} + 60 x^{10} - 160 x^{9} + 228 x^{8} - 96 x^{7} - 252 x^{6} + 552 x^{5} - 558 x^{4} + 344 x^{3} - 136 x^{2} + 32 x - 2 \)

Invariants of the Galois closure

Galois group:$C_2\times C_4^2:C_3:C_2^2$ (as 12T138)
Inertia group:12T89
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 8/3, 8/3, 3, 23/6, 23/6]
Galois mean slope:$85/24$
Galois splitting model:$x^{12} + 6 x^{10} - 5 x^{8} + 21 x^{4} + 14 x^{2} + 1$