Properties

Label 2.12.34.117
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(34\)
Galois group 12T193

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} + 8 x^{9} + 4 x^{4} - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $34$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.3.2.1, 2.6.11.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 12 x^{11} + 64 x^{10} - 200 x^{9} + 400 x^{8} - 512 x^{7} + 368 x^{6} - 32 x^{5} - 220 x^{4} + 240 x^{3} - 128 x^{2} + 32 x - 2 \)

Invariants of the Galois closure

Galois group:12T193
Inertia group:12T134
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 8/3, 8/3, 3, 7/2, 23/6, 23/6]
Galois mean slope:$175/48$
Galois splitting model:$x^{12} + 22 x^{10} + 451 x^{8} + 3388 x^{6} + 9075 x^{4} + 2662 x^{2} - 14641$