Properties

Label 2.12.33.365
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(33\)
Galois group $D_4 \times C_3$ (as 12T14)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 8 x^{10} + 28 x^{8} - 24 x^{6} + 20 x^{4} + 16 x^{2} + 24 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $33$
Discriminant root field: $\Q_{2}(\sqrt{-2*})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $6$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-2})$, 2.3.0.1, 2.4.11.17, 2.6.9.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + 4 t^{2} x^{2} + 6 t^{2} - 6 t \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3\times D_4$ (as 12T14)
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:[3, 4]
Galois mean slope:$11/4$
Galois splitting model:$x^{12} + 24 x^{10} + 252 x^{8} + 1288 x^{6} + 3060 x^{4} + 1296 x^{2} + 216$