Properties

Label 2.12.33.321
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(33\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 8 x^{10} - 12 x^{8} - 24 x^{6} + 20 x^{4} - 16 x^{2} - 24 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $33$
Discriminant root field: $\Q_{2}(\sqrt{2*})$
Root number: $1$
$|\Gal(K/\Q_{ 2 })|$: $12$
This field is Galois and abelian over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{2*})$, 2.3.0.1, 2.4.11.9, 2.6.9.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + \left(-4 t^{2} + 4 t + 16\right) x^{2} + 4 t^{2} + 2 t - 12 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[3, 4]
Galois mean slope:$11/4$
Galois splitting model:$x^{12} - 4 x^{11} - 62 x^{10} + 224 x^{9} + 1199 x^{8} - 3812 x^{7} - 8598 x^{6} + 23764 x^{5} + 21370 x^{4} - 50444 x^{3} - 8360 x^{2} + 20312 x + 5041$