Defining polynomial
| \( x^{12} + 24 x^{10} - 12 x^{8} + 64 x^{6} + 4 x^{4} + 32 x^{2} - 56 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $4$ |
| Residue field degree $f$ : | $3$ |
| Discriminant exponent $c$ : | $33$ |
| Discriminant root field: | $\Q_{2}(\sqrt{2})$ |
| Root number: | $-1$ |
| $|\Aut(K/\Q_{ 2 })|$: | $6$ |
| This field is not Galois over $\Q_{2}$. | |
Intermediate fields
| $\Q_{2}(\sqrt{-2})$, 2.3.0.1, 2.4.11.5, 2.6.9.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \) |
| Relative Eisenstein polynomial: | $ x^{4} + 2 t^{2} - 2 t \in\Q_{2}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_3\times D_4$ (as 12T14) |
| Inertia group: | Intransitive group isomorphic to $D_4$ |
| Unramified degree: | $3$ |
| Tame degree: | $1$ |
| Wild slopes: | [2, 3, 4] |
| Galois mean slope: | $3$ |
| Galois splitting model: | $x^{12} - 4 x^{11} - 2 x^{10} + 24 x^{9} - 5 x^{8} - 68 x^{7} + 98 x^{6} - 68 x^{5} + 158 x^{4} - 188 x^{3} + 112 x^{2} - 32 x + 113$ |