Properties

Label 2.12.33.190
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(33\)
Galois group $C_2^5.(C_2\times C_6)$ (as 12T134)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{10} - 14 x^{8} - 8 x^{4} - 32 x^{2} - 8 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $33$
Discriminant root field: $\Q_{2}(\sqrt{-2})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.3.0.1, 2.6.9.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + \left(8 t^{2} - 4\right) x^{2} - 6 t^{2} + 2 t - 6 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2^5.(C_2\times C_6)$ (as 12T134)
Inertia group:Intransitive group isomorphic to $C_2^6.C_2$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2, 2, 2, 3, 7/2, 7/2, 4]
Galois mean slope:$231/64$
Galois splitting model:$x^{12} - 8 x^{10} - 12 x^{8} + 80 x^{6} - 100 x^{4} + 48 x^{2} - 8$