Properties

Label 2.12.32.93
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group 12T186

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} - 4 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 6 x^{4} + 8 x^{2} + 8 x + 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}(\sqrt{-*})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.11.15

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 4 x^{11} - 192 x^{10} - 8076 x^{9} + 72226 x^{8} + 1366136 x^{7} + 17984952 x^{6} - 242555104 x^{5} - 3154451994 x^{4} + 9114999664 x^{3} + 121486031464 x^{2} + 284428165560 x + 297704982742 \)

Invariants of the Galois closure

Galois group:12T186
Inertia group:12T142
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 8/3, 8/3, 3, 10/3, 10/3, 7/2]
Galois mean slope:$10/3$
Galois splitting model:$x^{12} - 2 x^{10} + 13 x^{8} - 100 x^{6} + 135 x^{4} - 66 x^{2} + 11$