Properties

Label 2.12.32.70
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group 12T193

Related objects

Learn more about

Defining polynomial

\( x^{12} - 4 x^{11} - 4 x^{10} - 4 x^{9} + 8 x^{7} - 4 x^{6} + 8 x^{3} - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.3.2.1, 2.6.11.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 4 x^{11} + 124 x^{10} - 316 x^{9} + 6688 x^{8} - 159816 x^{7} + 885532 x^{6} - 1217472 x^{5} + 53127888 x^{4} - 860962856 x^{3} + 3395502688 x^{2} + 1609967296 x - 47530703570 \)

Invariants of the Galois closure

Galois group:12T193
Inertia group:12T134
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2, 3, 19/6, 19/6, 7/2]
Galois mean slope:$619/192$
Galois splitting model:$x^{12} - 14 x^{10} - 28 x^{9} + 39 x^{8} + 192 x^{7} + 128 x^{6} - 376 x^{5} - 817 x^{4} - 624 x^{3} - 178 x^{2} - 4 x - 1$