Properties

Label 2.12.32.48
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group $S_3\times D_4$ (as 12T28)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 8 x^{11} + 4 x^{10} + 4 x^{9} + 4 x^{8} - 4 x^{6} + 8 x^{5} + 8 x^{4} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}(\sqrt{-*})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-2})$, 2.3.2.1, 2.4.10.8, 2.6.11.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 16 x^{11} + 124 x^{10} - 868 x^{9} + 6108 x^{8} - 31888 x^{7} + 94348 x^{6} - 110088 x^{5} - 99112 x^{4} + 402832 x^{3} - 514288 x^{2} + 304768 x - 67646 \)

Invariants of the Galois closure

Galois group:$S_3\times D_4$ (as 12T28)
Inertia group:$D_4 \times C_3$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 3, 7/2]
Galois mean slope:$17/6$
Galois splitting model:$x^{12} + 6 x^{10} - 12 x^{9} + 21 x^{8} - 48 x^{7} + 92 x^{6} - 120 x^{5} + 167 x^{4} - 208 x^{3} + 214 x^{2} - 140 x + 49$