Properties

Label 2.12.32.429
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group $S_3\times D_4$ (as 12T28)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 8 x^{11} + 8 x^{10} + 4 x^{9} + 8 x^{6} + 8 x^{2} + 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}(\sqrt{-*})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-2})$, 2.3.2.1, 2.4.10.7, 2.6.11.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 8 x^{11} + 104 x^{10} - 428 x^{9} + 5856 x^{8} - 2480 x^{7} + 146264 x^{6} + 86688 x^{5} + 514976 x^{4} - 12470736 x^{3} + 17174072 x^{2} + 6597328 x + 441542 \)

Invariants of the Galois closure

Galois group:$S_3\times D_4$ (as 12T28)
Inertia group:$D_4 \times C_3$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 3, 7/2]
Galois mean slope:$17/6$
Galois splitting model:$x^{12} - 6 x^{10} - 12 x^{9} - 3 x^{8} + 48 x^{7} + 88 x^{6} + 8 x^{5} - 53 x^{4} + 22 x^{2} + 4 x + 1$