Properties

Label 2.12.32.373
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group $C_2\times C_4^2:C_3:C_2^2$ (as 12T138)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} - 2 x^{10} - 4 x^{9} + 4 x^{8} + 4 x^{4} + 8 x^{2} - 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.10.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 12 x^{11} + 62 x^{10} - 180 x^{9} + 308 x^{8} - 256 x^{7} - 112 x^{6} + 608 x^{5} - 828 x^{4} + 624 x^{3} - 264 x^{2} + 48 x - 6 \)

Invariants of the Galois closure

Galois group:$C_2\times C_4^2:C_3:C_2^2$ (as 12T138)
Inertia group:12T89
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 8/3, 8/3, 3, 11/3, 11/3]
Galois mean slope:$41/12$
Galois splitting model:$x^{12} - 12 x^{10} + 53 x^{8} - 104 x^{6} + 87 x^{4} - 28 x^{2} + 1$