Properties

Label 2.12.32.319
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group $D_4\times S_4$ (as 12T86)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 8 x^{11} - 4 x^{10} - 4 x^{9} + 8 x^{8} + 8 x^{7} - 2 x^{4} + 4 x^{2} + 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}(\sqrt{-*})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{-2})$, 2.3.2.1, 2.6.11.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 8 x^{11} - 244 x^{10} + 2652 x^{9} + 19192 x^{8} - 452808 x^{7} + 3369856 x^{6} - 16762112 x^{5} + 74596142 x^{4} - 269114272 x^{3} + 567994980 x^{2} - 370305936 x - 326512186 \)

Invariants of the Galois closure

Galois group:$D_4\times S_4$ (as 12T86)
Inertia group:12T51
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 8/3, 8/3, 3, 7/2]
Galois mean slope:$37/12$
Galois splitting model:$x^{12} - 2 x^{10} + 13 x^{8} - 12 x^{6} + 23 x^{4} - 26 x^{2} + 11$