Properties

Label 2.12.32.284
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group $C_2\times C_4^2:C_3:C_2$ (as 12T95)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 4 x^{11} - 2 x^{10} - 4 x^{9} - 4 x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{4} - 4 x^{2} + 8 x + 6 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $32$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.10.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} - 12 x^{11} + 62 x^{10} - 180 x^{9} + 316 x^{8} - 320 x^{7} + 116 x^{6} + 136 x^{5} - 216 x^{4} + 128 x^{3} - 36 x^{2} + 8 x - 10 \)

Invariants of the Galois closure

Galois group:$C_2\times C_4^2:C_3:C_2$ (as 12T95)
Inertia group:12T55
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 8/3, 8/3, 11/3, 11/3]
Galois mean slope:$10/3$
Galois splitting model:$x^{12} - 4 x^{10} - x^{8} + 12 x^{6} + 9 x^{4} + 4 x^{2} + 1$